9th International Congress of Spring Industry in Taormina/Italy September 29th - October 1th, 2017:

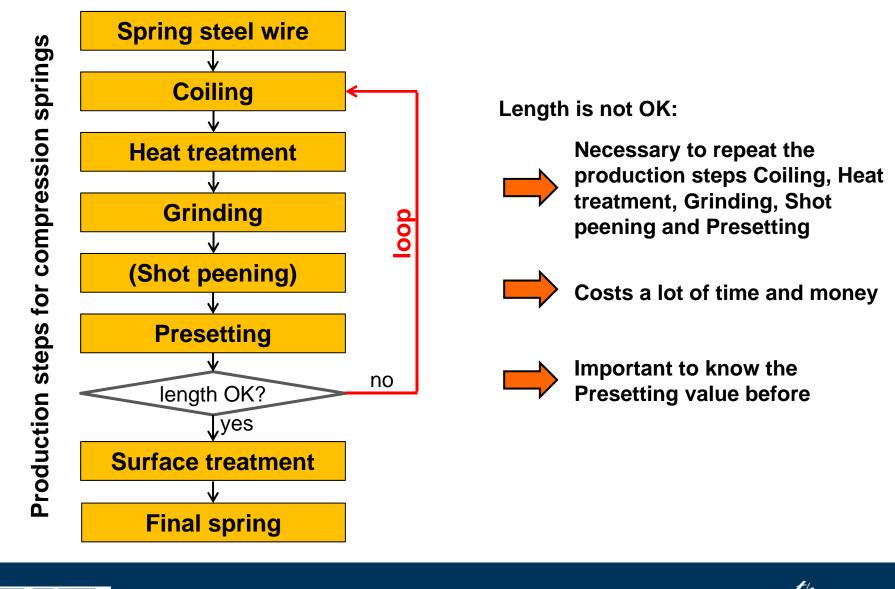
"Prediction of Presetting Value for Helical Compression Springs"

Dr.-Ing. René Reich Technische Universität Ilmenau, Germany

EUROPEAN SPRING FEDERATION www.esf-springs.com

www.anccem.org

Page 1


Content

- 1. Motivation
- 2. Torsion Test
- 3. Real Shear Stress Shear Characteristic
- 4. Transfer on Helical Compression Springs
- 5. Experimental Investigations
- 6. Summary

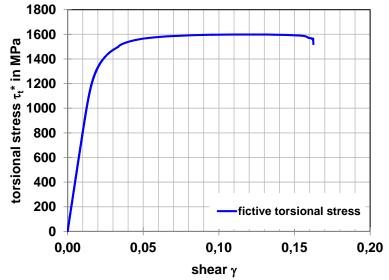
Motivation

31.07.2017 Page 3

Torsion Test

Main stress of the wire in helical compression springs is torsion

- Torsion test is best suited to determine the static material behaviour
- Result: torsional Moment M_t dependent on the torsion angle φ, the wire diameter d and the wire length I
- Results can be used for calculation of a


fictive torsional stress: $\tau_t^* = \frac{16 \cdot M_t}{\pi \cdot d^3}$

maximum shear:

$$\gamma_{max} = \arctan\left(\frac{\varphi \cdot d}{2 \cdot l}\right)$$

- **Problem:** valid for elastic deformations and not for elastic-plastic deformations
- With torsional stress shear characteristic, it is not possible to predict the Presetting value
- Real shear stress shear characteristic of the material is necessary

Page 4

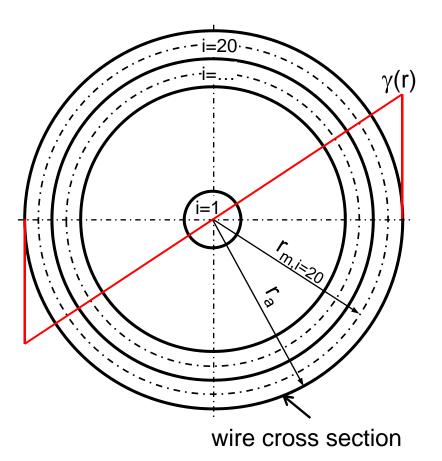
Real Shear Stress Shear Characteristic

- Real shear stress shear characteristic in the wire was determined by simulating the torsional moment angle characteristic
- material law according to Ramberg-Osgood-Equation was used

$$\gamma = \gamma_{el} + \gamma_{pl} = \frac{\tau}{G} + \left(\frac{\tau}{k'}\right)^{\frac{1}{n'}}$$

- Describing variables:
- G (shear Modulus)
- n' (solidifying exponent)
- k' (solidifying coefficient)
- Describing variables were determined by a solver calculation using Excel program

17 Page 5


Real shear stress shear characteristic

- 1st Step: Wire cross section was divided into 20 circular rings
- 2nd Step: shear γ was assigned to each of the rings

$$\gamma(\varphi, r_{m,i}) = \gamma_{max} \cdot \frac{r_{m,i}}{r_a}$$

- *3rd Step*: According to Ramberg-Osgood-Equation the existing mean shear stress can be assigned to each circular ring
- 4th Step: by multiplication of the mean shear stress with corresponding circular ring area a force F_{φ,i} results

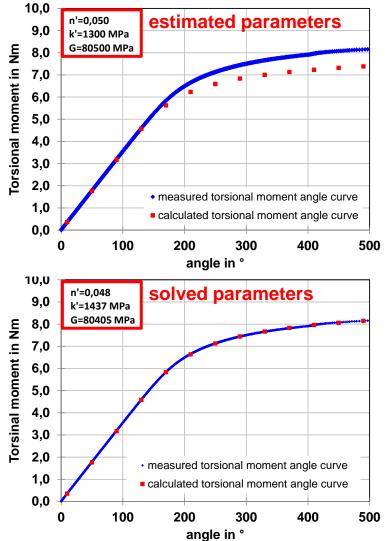
$$F_{\varphi,i} = \tau_{\varphi,i} \cdot A_i$$

Real shear stress shear characteristic

• *5th Step*: after multiplication by the corresponding average radius, a partial moment generated by the circular ring results

$$M_{\varphi,i} = F_{\varphi,i} \cdot r_{m,i} = \tau_{\varphi,i} \cdot A_i \cdot r_{m,i}$$

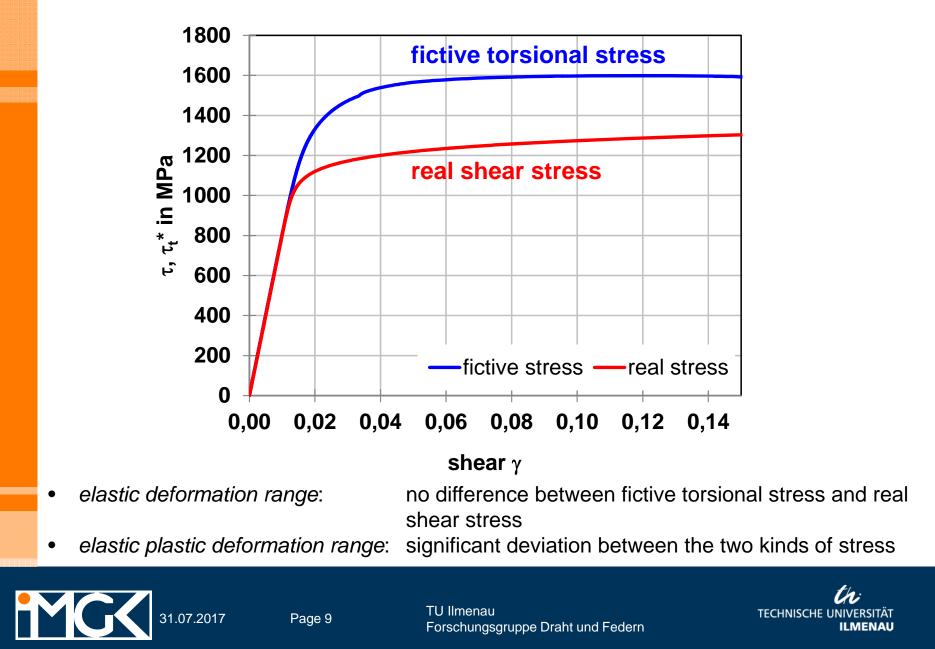
- 6th Step: summation of all partial moments $M_{\varphi} = \sum_{i=1}^{20} M_{\varphi,i} = \sum_{i=1}^{20} \tau_{\varphi,i} \cdot A_i \cdot r_{m,i}$
- Result: torsional moment depending from angle, wire geometry and parameters of the Ramberg-Osgood-Equation (G, n', k')



Real shear stress shear characteristic

• *5th Step*: after multiplication by the corresponding average radius, a partial moment generated by the circular ring results

$$M_{\varphi,i} = F_{\varphi,i} \cdot r_{m,i} = \tau_{\varphi,i} \cdot A_i \cdot r_{m,i}$$

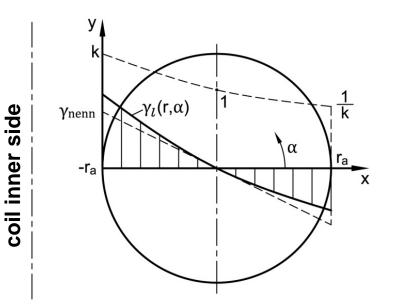

- 6th Step: summation of all partial moments $M_{\varphi} = \sum_{i=1}^{20} M_{\varphi,i} = \sum_{i=1}^{20} \tau_{\varphi,i} \cdot A_i \cdot r_{m,i}$
- Result: torsional moment depending from angle, wire geometry and parameters of the Ramberg-Osgood-Equation (G, n', k')
- *Problem*: parameters of the Ramberg-Osgood-Equation (G, n', k') are unknown
- Solution: determine the parameters by using the solver integrated in Excel in order to minimize the deviations

Real Shear Stress Shear Characteristic

Transfer on Helical Compression Springs

- Nonlinear shear distribution across the wire cross-section
- Taken into account by using the stress correction factor k

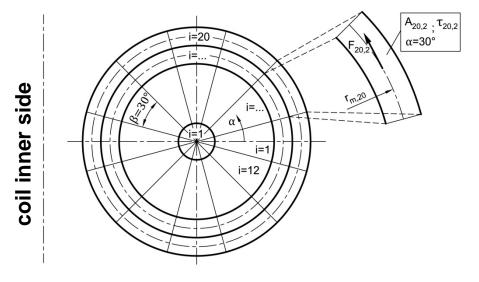
$$k(r,\alpha) = a \cdot r^2 \cdot \cos^2 \alpha + b \cdot r \cdot \cos \alpha + c$$
$$a = \frac{k}{2r_a^2} + \frac{1}{2kr_a^2} - \frac{1}{r_a^2} \qquad b = -\frac{k}{2r_a} + \frac{1}{2kr_a}$$
$$c = 1$$


• Elastic deformation range:

31.07.2017

- Linear relationship between spring deflection and spring load as well as between spring deflection and shear
- Elastic-plastic deformation range:
 - Only linear relationship between spring deflection and shear

Page 10


$$\gamma_{l}(r, \alpha) = \left(a \cdot r^{2} \cdot \cos^{2} \alpha + b \cdot r \cdot \cos \alpha + c\right) \cdot \frac{r}{r_{a}} \cdot \gamma_{nenn}$$
with: $\gamma_{nenn} = \frac{s_{pl}}{w^{2} \cdot d \cdot \pi \cdot n_{f}}$

Transfer on Helical Compression Springs

 1st Step: Wire cross section was divided into circular ring segments A_{i,j}

• 2nd Step: an average local shear was assigned to each circular ring segment

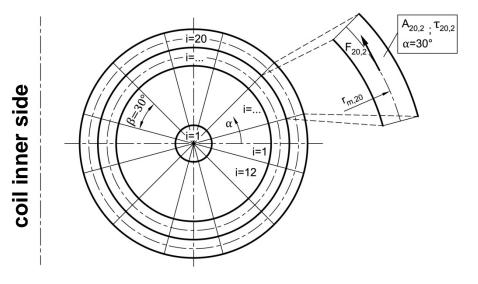
$$\gamma_{i,j}(r_{m,i},\alpha_j) = (a \cdot r_{m,i}^2 \cdot \cos^2 \alpha_j + b \cdot r_{m,i} \cdot \cos \alpha_j + c) \cdot \frac{r_{m,i}}{r_a} \cdot \gamma_{nenm}$$

• *3rd Step*: real shear stress shear characteristic was used to assign a shear stress to each circular ring segment

$$\tau_{i,j}=f(\gamma_{i,j})$$

• *4th Step*: multiplication by area of circular ring segment $A_{i,j}$ and the average radius $r_{m,i}$, a partial moment $M_{i,j}$ generated by the circular ring segment results

$$M_{i,j} = \tau_{i,j} \cdot A_{i,j} \cdot r_{m,i}$$



Transfer on Helical Compression Springs

5th Step: summation of all partial moments M_{i,i}

$$M = \sum_{i=1}^{20} \left(\sum_{j=1}^{12} M_{i,j} \right)$$

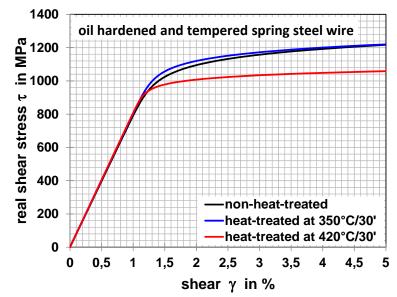
- Result: total required torsional Moment M and also the setting force F as a function of spring deflection s_{pl}
- Spring back: elastic material behaviour was assumed
 - same moment M, which was necessary for the spring deflection \mathbf{s}_{pl} is also present

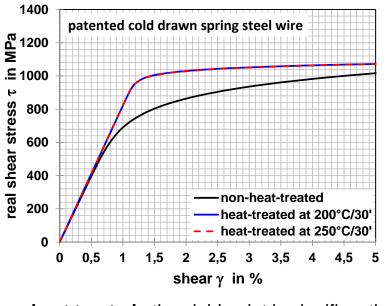
$$s_{el} = \frac{16 \cdot M \cdot D^2}{G \cdot d^4} \cdot n_f = \frac{8 \cdot F \cdot D_m^3}{G \cdot d^4} \cdot n_f$$

• Presetting value:
$$\Delta s = s_{pl} - s_{el}$$

Experimental Investigations - Materials used and their Characteristics -

- Oil hardened and tempered and patented cold drawn spring steel wire of diameter d=3.0 mm were used
- Wires have been heat-treated depending on material
- Real shear stress shear characteristic was determined using the procedure described in the previous slides


material	heat treatment	G in GPa	nʻ	k' in MPa
Oil hardened and tempered spring steel wire	non-heat-treated	79.396	0,0615	1496
	350°C/30'	80.405	0,0489	1437
	420°C/30'	80.823	0,0310	1172
Patented cold	non-heat-treated	79.422	0,1162	1490
drawn spring steel wire	200°C/30'	82.414	0,0251	1164
	250°C/30'	82.434	0,0257	1166



Experimental Investigations Materials used and their Characteristics

• Parameters of the Ramberg-Osgood-Equation allow to describe the material behaviour of the wires for shear stresses

- **350°C/30'**: yield point increases with respect to the non-heat-treated wire
- 420°C/30': a significant reduction in the yield point was observed.

non heat treated: the yield point is significantly lower than with heat-treated wires

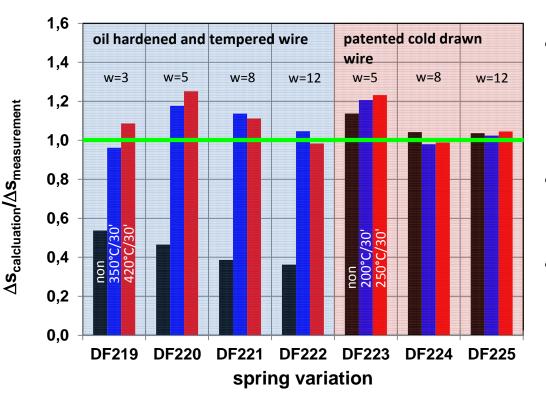
heat treated: no differences in the real shear stress shear characteristic of the wires

Experimental Investigations - Spring Variation -

- Total number of coils of the spring was not varied $(n_t=6,5)$
- Heat treatment was similar to that of the wires
- Spring index was varied between 3 and 12 for oil hardened and tempered and between 5 and 12 for patented cold drawn wire

name	material	w	L _o in mm
DF219	54SiCr6	3	25,9
DF220	54SiCr6	5	36,7
DF221	54SiCr6	8	62,9
DF222	54SiCr6	12	117,2
DF223	DH	5	36,8
DF224	DH	8	63,0
DF225	DH	12	126,0

Experimental Investigations - Presetting Experiments and Results -


- Spring variants were preset three times by controlled deflection
- Presetting tests were made with three springs of the same geometry
- Presetting value was determined by forming the arithmetic mean value

	Experimental results					Results of calculation	
name	L _o in mm (before)	s _{pl} in mm	L _o in mm (after)	∆s in mm	F in N	∆s in mm	F in N
	25,92	6,22	25,38	0,55	1340	0,5	1316
DF 219	25,9	6,22	25,39	0,5	1336		
	25,84	6,22	25,34	0,51	1335		

Experimental Investigations - Presetting Experiments and Results -

Relation between calculation and experiment

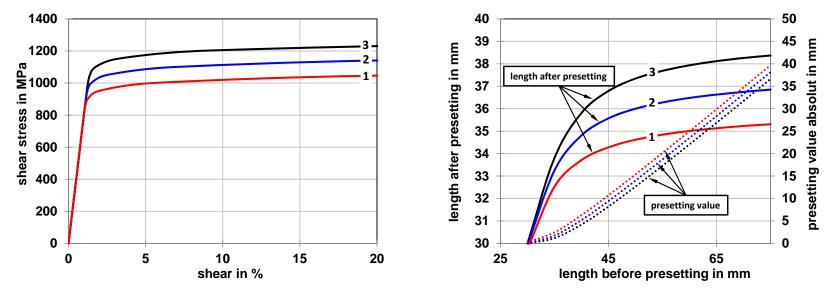
- Calculated presetting values were between 96 and 125% (exception of non heat treated springs made of oil hardened and tempered material)
- On average, deviation of 10% between calculation an experiment
- Significant deviations from non heat treated springs made of oil hardened and tempered steel can be explained by the residual stress after coiling process

Page 17

Summary

- The approach presented is a simple, fast and inexpensive way to determine the presetting value based on the real shear stress shear characteristic of the material
- The input of spring geometry and material parameters as well as the calculation of the presetting value require only a few seconds with relatively good result quality as opposed to time and cost-intensive simulations using FE models
- In addition, it is possible to estimate realizable spring lengths depending on the properties of the material.
- The feasibility of a spring with the corresponding material properties can be demonstrated without great effort.

Thank you for your attention!


Pa<u>ge 19</u>

Theoretical Considerations - Realizable Spring Length -

sample calculation:

- three different materials were used
- Geometry of the spring was not varied (number of coils: n_t=6.5; spring index: w=5; wire diameter d=3.0 mm)
- Presetting to solid length

From a certain setting way, the length of the helical compression spring only increases slightly after presetting process.

